The generalized method of moments

Andrew Pua

May 2022

The method of moments (MM) before 1982

MM before 1982, continued

MM after 1982

Example: Best linear prediction from Lectures 1-5

Example: Correctly specified linear regression from Lectures 6-8

The setup for the generalized method of moments

The algorithm for the generalized method of moments

Example: OLS, where \(L=K\)

Example: OLS, where \(L=K\), continued

Linear structural equations

Linear structural equations, continued

GMM estimation of linear structural equations

GMM estimation of linear structural equations, continued

Example of linear structural equations: setup

Example of linear structural equations: source of the problem

Example of linear structural equations: recovering \(\beta_0^o\) and \(\beta_1^o\)

Example of linear structural equations: recovering \(\beta_0^o\) and \(\beta_1^o\)

Example of linear structural equations: simultaneous equations

Example of linear structural equations: simultaneous equations, continued

What happens if \(L>K\): building intuition

What happens if \(L>K\): the reduced form

What happens if \(L>K\): the reduced form, continued

What happens if \(L>K\): two-stage least squares estimand

What happens if \(L>K\): two-stage least squares estimator

What happens if \(L>K\): guidance from asymptotic theory

What happens if \(L>K\): consistency argument

What happens if \(L>K\): asymptotic normality argument

Now, we can choose \(\widehat{W}\) optimally.

Optimal weighting of moments: building intuition

Optimal weighting of moments: exercise

Optimal weighting of moments: linear structural equations

The algorithm for efficient GMM

Other GMM algorithms

Returning to why it is called 2SLS

Control function interpretation

Control function interpretation, continued

More resources on control functions

How do we test whether the model is correctly specified?

Special case: Linear structural equations, again

Special case: Deriving the distribution of the test statistic

Special case: Deriving the distribution of the test statistic, continued

Special case: Rewriting the test statistic

Special case: Rewriting the test statistic, continued

Some questions to explore

Structure of the consistency proof for the GMM case

Sketch of the idea behind the consistency proof

Structure of asymptotic normality proof for the GMM case

Step 0. Key objects and the tools to apply

Step 0. Key objects and the tools to apply, continued

Step 1. Making sure we are in the interior

Step 2. Derive a local linear approximation of the FOCs using a mean value theorem

Step 3. Completing the proof

The form of \(\Omega\)

What you should notice and understand

Hansen’s \(J\)-test

Step 1. Connect \(\widehat{m}\left(\widehat{\beta}\right)\) to \(\widehat{m}\left(\beta^{o}\right)\).

\[\begin{eqnarray} && \widetilde{V}^{-1/2}\sqrt{n}\widehat{m}\left(\widehat{\beta}\right)\\ &=& \widetilde{V}^{-1/2}\sqrt{n}\widehat{m}\left(\beta^{o}\right)+\widetilde{V}^{-1/2}\frac{\partial\widehat{m}\left(\bar{\beta}\right)}{\partial\beta^{\prime}}\sqrt{n}\left(\widehat{\beta}-\beta^{o}\right)\\ &=& \widetilde{V}^{-1/2}\sqrt{n}\widehat{m}\left(\beta^{o}\right)-\widetilde{V}^{-1/2}\frac{\partial\widehat{m}\left(\bar{\beta}\right)}{\partial\beta}\left[\frac{\partial\widehat{m}\left(\widehat{\beta}\right)}{\partial\beta^{\prime}}\widetilde{V}^{-1}\frac{\partial\widehat{m}\left(\bar{\beta}\right)}{\partial\beta}\right]^{-1}\frac{\partial\widehat{m}\left(\widehat{\beta}\right)}{\partial\beta^{\prime}}\widetilde{V}^{-1}\sqrt{n}\widehat{m}\left(\beta^{o}\right)\\ &=& \underbrace{\left[I_{L}-\widetilde{V}^{-1/2}\frac{\partial\widehat{m}\left(\bar{\beta}\right)}{\partial\beta}\left[\frac{\partial\widehat{m}\left(\widehat{\beta}\right)}{\partial\beta^{\prime}}\widetilde{V}^{-1}\frac{\partial\widehat{m}\left(\bar{\beta}\right)}{\partial\beta}\right]^{-1}\frac{\partial\widehat{m}\left(\widehat{\beta}\right)}{\partial\beta^{\prime}}\widetilde{V}^{-1/2}\right]}_{\widehat{\Pi}}\times\widetilde{V}^{-1/2}\sqrt{n}\widehat{m}\left(\beta^{o}\right) \end{eqnarray}\]

Step 2. Complete the proof.

What happens if you do not use optimal GMM?

\[\begin{eqnarray} && n\widehat{m}\left(\widetilde{\beta}\right)^{\prime}\widehat{W}^{-1}\widehat{m}\left(\widetilde{\beta}\right) \\ &=& \sqrt{n}\widehat{m}\left(\widetilde{\beta}\right)^{\prime}\widetilde{V}^{-1/2}\widetilde{V}^{1/2}\widehat{W}^{-1}\widetilde{V}^{1/2}\widetilde{V}^{-1/2}\sqrt{n}\widehat{m}\left(\widetilde{\beta}\right)\\ &=& \left[\widetilde{V}^{-1/2}\sqrt{n}\widehat{m}\left(\widetilde{\beta}\right)\right]^{\prime}\widetilde{V}^{1/2}\widehat{W}^{-1}\widetilde{V}^{1/2}\left[\widetilde{V}^{-1/2}\sqrt{n}\widehat{m}\left(\widetilde{\beta}\right)\right]\\ &=& \left[\widetilde{\Pi}\widetilde{V}^{-1/2}\sqrt{n}\widehat{m}\left(\beta^{o}\right)\right]^{\prime}\widetilde{V}^{1/2}\widehat{W}^{-1}\widetilde{V}^{1/2}\left[\widetilde{\Pi}\widetilde{V}^{-1/2}\sqrt{n}\widehat{m}\left(\beta^{o}\right)\right]\\ &=& \left[\widetilde{V}^{-1/2}\sqrt{n}\widehat{m}\left(\beta^{o}\right)\right]^{\prime}\underbrace{\widetilde{\Pi}^{\prime}\widetilde{V}^{1/2}\widehat{W}^{-1}\widetilde{V}^{1/2}\widetilde{\Pi}}_{\overset{p}{\to}?}\underbrace{\left[\widetilde{V}^{-1/2}\sqrt{n}\widehat{m}\left(\beta^{o}\right)\right]}_{\overset{d}{\to}N\left(0,I\right)} \end{eqnarray}\]

Exercises from Chapter 7

Exercises from Chapter 8