Quiz 4 (10-15 minutes)
Suppose that you observe IID draws \(\{\left(Y_t,X_t\right)\}_{t=1}^n\) from a data generating process satisfying the following assumptions:
- Assumption 1: \(Y_t=\beta_0^o+\beta_1^o X_t +\varepsilon_t\) for some \(\beta_0^o\), \(\beta_1^o\), and some unobservable \(\varepsilon_t\).
- Assumption 2: \(X_t\in\{0,1\}\) is a binary/dummy random variable.
- Assumption 3: \(\varepsilon_t \in \{-1,2\}\), where \(\Pr\left(\varepsilon_t=-1\right)=2/3\) and \(\Pr\left(\varepsilon_t=2\right)=1/3\).
- Assumption 4: \(\varepsilon_t\) and \(X_t\) are independent.
- Assumption 5: \(0<\sum_t X_t <n\)
Determine whether the following statements are true or false:
- \(\mathbb{E}\left(\varepsilon_t|X_t\right)=\mathbb{E}\left(\varepsilon_t\right)\).
- \(\mathbb{E}\left(\varepsilon_t\right)=0\).
- \(\mathsf{Var}\left(\varepsilon_t|X_t\right)=\mathsf{Var}\left(\varepsilon_t\right)\).
- \(\mathsf{Var}\left(\varepsilon_t\right)\) is constant for all \(t\).
- Assumptions 3.1 to 3.3 are satisfied.
- Assumptions 3.4 is satisfied.
- Assumption 3.5 is satisfied.