Details of the proof of consistency for the GMM estimator for 5° (Theorem 8.2)

Step 0. Key objects and the tools to apply
e Introduce the key objects.

— [ is a generic label for the unknown parameter. 3 is assumed to be the parameter
of interest (see Assumption 8.3). 3 is a GMM estimator. © is the parameter space.

— Define the sample GMM objective function as
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0(8) = —m (8) W' ()
and the population GMM objective function as
Q(B) =-m(B) W™'m(B).
— W as seen in @ (8) and Assumption 8.4 has to be positive definite.

e Understand the key tools.

— (One version of Cauchy-Schwarz) For a € RP, b € RP, and p X p matrix 2, we
have |a'Qb| < |lal| [|] [|£2]].

— (Weierstrass Theorem, statement from Wikipedia) If K is a compact set and
f: K — Ris a continuous function, then f is bounded and there exist a,, as € K
such that

fla)=sup f(z), flax)= l}g}f{f (z).
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— (Lemma 8.2) The uniform law of large numbers for ergodic stationary processes

— (Extremum Estimator Lemma, Lemma 8.3) Suppose that (i) © is a compact
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subset of RX. (i) Q (8) is continuous in £ for any data. (iii) Q (3) is a measurable
function of the data for all § € ©. If there is a function @ (5) such that (C1)
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Q () is uniquely maximized on © at 8° € ©, (C2) @ () converges uniformly in
probability to @ (5). Then § 2 3.

e The goal is to apply the Extremum Estimator Lemma.

— (C2) Show that the largest possible absolute discrepancy (or difference) between
the two objective functions disappears in the limit, regardless of the value of 5:

sup |Q (8) — Q (B)| & 0.
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Another way to say this is that you have to show the uniform convergence of @ (B)
to Q (B).
— (C1) Show that 8° uniquely maximizes Q ().




Step 1. Show conditions (i) to (iii) of the Extremum Estimator Lemma hold
for the GMM case.

e Assumption 8.1 satisfies (i).

e Assumption 8.2(a), along with the fact that @ (B) is quadratic, ensures that (ii) and
(iii) are satisfied.

Step 2. Decompose into components which are easy to analyze. Do some
algebra (add and subtract tricks) on @ (8) — Q (5), apply the triangle inequality repeatedly,
and show that
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Step 3. Apply a version of Cauchy-Schwarz inequality, the Weierstrass theo-
rem, and the uniform LLN.

e Use a particular version of the Cauchy-Schwarz inequality and the definition of a supre-
mum (informally think of this as a maximum) to show that:
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e All the suprema in the previous expressions exist (note these are not guaranteed to
exist).
— sup ||m(pB)|| exists because of Assumpton 8.1, 8.2(d), and the Weierstrass theorem.
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— sup ||m(B) — m(B)|| exists because of Assumption 8.2(c).
)

e All the terms involving W and W should be finite and nonsingular, which follows from
Assumption 8.4 and Definition 8.1.



e In the end, we have
sup|Q (8) = Q (9)]
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All the three terms on the right hand side exist and are bounded. Assumptions 8.2(b),
8.2(c), and 8.4, along with the continuous mapping theorem, ensure that

20,

sup|@ () = Q(9)
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As a result, (C2) holds.

Step 4. Show that (° uniquely maximizes Q (). Let 5 be another maximizer
of Q(p), so that B # (3°. Let P be some nonsingular matrix such that W = PP’. This
P exists because of Assumption 8.4 where nonsingularity must be strengthened to positive
definiteness. Thus,

Q(B) = =m (B) wtm () = = (3)' (02~ (5) = o~ (5) |

Since there exists a unique ° € © such that m (4°) = 0 by Assumption 8.3, then Q (5) <

0=Q(8).
As a result, (C1) holds.

Step 5. Show that 5 % 3°.  Because (i), (ii), (iii) hold by Step 1, (C2) holds by Step
3, and (C1) holds by Step 4, we must have § 2 5° by the Extremum Estimator Lemma.



