
Detour: Inequalities (from Hansen's lecture notes)

1. (Triangle inequality) For any m× 1 random vectors a and b,

∥a+ b∥ ≤ ∥a∥+ ∥b∥.

2. (Cauchy-Schwarz inequality) For any m× 1 random vectors a and b,

|a′b| ≤ ∥a∥∥b∥.

3. (Cauchy-Schwarz inequality for expectations) For any random m× n matrices X and

Y , we have

E ∥X ′Y ∥ ≤
[
E
(
∥X∥2

)]1/2 [E (∥Y ∥2
)]1/2

.

4. (Cauchy-Schwarz inequality for matrices) For any m× k matrix A and k ×m matrix

B, we have

∥AB∥ ≤ ∥A∥ ∥B∥ .
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Writing down the consistency argument

Step 1 We start with the OLS estimator:

β̂ =

(
1

n

n∑
t=1

XtX
′
t

)−1(
1

n

n∑
t=1

XtYt

)

=

(
1

n

n∑
t=1

XtX
′
t

)−1(
1

n

n∑
t=1

Xt ( )

)

= +

(
1

n

n∑
t=1

XtX
′
t

)−1(
1

n

n∑
t=1

)

Step 2 Since {Xt}∞t=1 is ??, we can conclude that {XtX
′
t}∞t=1 is ??. Furthermore, XitXjt,

which is the (i, j)th element of XtX
′
t, has �nite expected value provided that ??, because,

by the ??,

E |XitXjt| ≤
[
E
(
X2

jt

)]1/2 [E (X2
it

)]1/2 ≤ C1.

By the ??, we can conclude that

1

n

n∑
t=1

XtX
′
t

p→ .

Step 3 Let A be a square matrix and g (A) = , provided that A is invertible. By

??, we can conclude that (
1

n

n∑
t=1

XtX
′
t

)−1

p→ .

Step 4 Next, recall that by de�nition, ut = Yt − X ′
tβ

∗. Focus on Xtut. Given that

{(Yt, X
′
t)}

∞
t=1 is ??, we can conclude that { }∞t=1 is ??. Furthermore, Xjtut, which is the

jth element of Xtut, has �nite expected value provided that Xjt and ut have �nite second

moments for all j, because, by the ??,

E |Xjtut| ≤ [E ( )]1/2 [E ( )]1/2 ≤ C2.

By the ??, we can conclude that

1

n

n∑
t=1

Xtut
p→ .
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Step 5 We can now say that E (Xtut) =?? because ??. Now consider the function

g (c, A,B) = c+ A−1B. By ??, we can conclude that

β̂
p→

Take a step back.

1. How will the proof change if you have correct speci�cation? Did the proof rely on

correct speci�cation?

2. What will happen when
1

n

n∑
t=1

XtX
′
t is not invertible for �nite n?

3. What happens in the case of conditional homoscedasticity? How will the argument

change?
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Writing down the asymptotic normality argument

Step 1 We start once again with the OLS estimator:

β̂ − β∗ =

(
1

n

n∑
t=1

XtX
′
t

)−1(
1

n

n∑
t=1

)
√
n
(
β̂ − β∗

)
=

(
1

n

n∑
t=1

XtX
′
t

)−1( n∑
t=1

)

Step 2 Show that (
1

n

n∑
t=1

XtX
′
t

)−1

p→ (E (XtX
′
t))

−1
.

Step 3 Show that {Xtut}∞t=1 is ergodic stationary. Next, there are two cases to consider,

depending on which chapter you are in.

1. (MDS case) If {Xtut} is MDS, we have a CLT available (which CLT, and are the

conditions satis�ed?). As n → ∞,

√
n

(
1

n

n∑
t=1

Zt

)
d→ N (0, V ) ,

where V =??. Take note that ut is e�ectively εt here. Refer to our slides for the

discussion.

2. (non-MDS case) If {Xtut} is a zero-mean covariance stationary process, we have a CLT

available. In Chapter 6, the CLT is directly assumed to hold for {Xtut}. Therefore, as
n → ∞,

√
n

(
1

n

n∑
t=1

Zt

)
d→ N (0, V ) ,

where V is the long-run variance
∞∑

j=−∞

Γ (j) (What is Γ (j)?)

Step 4 Now, consider the function g (A,B) = A−1B. By ?? and ?? property of the

multivariate normal:

1. we can conclude that in the IID setting (Chapter 4), we have

√
n
(
β̂ − β∗

)
d→
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2. we can conclude that in the ergodic stationary MDS setting (Chapter 5), we have

√
n
(
β̂ − βo

)
d→

3. we can conclude that in the ergodic stationary non-MDS setting (Chapter 6), we have

√
n
(
β̂ − β∗

)
d→

Take a step back.

1. How will the proof change if you have correct speci�cation? Did the proof rely on

correct speci�cation?

2. What will happen when
1

n

n∑
t=1

XtX
′
t is not invertible for �nite n?

3. What happens in the case of conditional homoscedasticity? How will the argument

change?
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Writing down the argument for consistent covariance matrix estimation (inspired

by Hansen's lecture notes) The main textbook only proves the consistency of

V̂ =
1

n

n∑
t=1

XtX
′
tû

2
t

for V = E (XtX
′
tu

2
t ) in Chapters 4 and 5. In Chapter 6, the consistency of the estimator for

the long-run covariance matrix is directly assumed rather than proven. We now write down a

version of the argument using norms instead of summations. The version using summations

can be found in the main textbook.

Step 1 First, we can split up V̂ into two parts, i.e.,

V̂ =
1

n

n∑
t=1

XtX
′
tû

2
t =

1

n

n∑
t=1

XtX
′
t

(
u2
t + û2

t − u2
t

)
=

1

n

n∑
t=1

XtX
′
tu

2
t +

1

n

n∑
t=1

XtX
′
t

(
û2
t − u2

t

)
Step 2 Let us analyze the �rst term. We have to ensure that

1

n

n∑
t=1

XtX
′
tu

2
t

p→ E
(
XtX

′
tu

2
t

)
= V.

Since {(Yt, X
′
t)}

∞
t=1 is ??, we can conclude that {XtX

′
tu

2
t}

∞
t=1 is also ??. We now have to

ensure that E (∥XtX
′
tu

2
t∥) is �nite. Note that (justify each step, please!)

E
(∥∥XtX

′
tu

2
t

∥∥) = E
(
∥XtX

′
t∥u2

t

)
≤
[
E
(
∥XtX

′
t∥

2
)]1/2 [

E
(
u4
t

)]1/2
≤
[
E
(
∥Xt∥2 ∥X ′

t∥
2
)]1/2 [

E
(
u4
t

)]1/2
=
[
E
(
∥Xt∥4

)]1/2 [E (u4
t

)]1/2
.

Provided thatXjt have ?? for all j and ut have ??, then we can conclude that E (∥XtX
′
tu

2
t∥) <

∞. By ??, we can conclude that

1

n

n∑
t=1

XtX
′
tu

2
t

p→ .
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Step 3 Next, we look at the behavior of the scalar û2
t − u2

t , i.e.,

ût = Yt −X ′
tβ̂

= Yt −X ′
tβ

∗ +X ′
tβ

∗ −X ′
tβ̂

⇒ û2
t = u2

t − 2
(
β̂ − β∗

)′
Xtut +

[
X ′

t

(
β̂ − β∗

)]2
.

Our target is to derive an upper bound for the norm of

1

n

n∑
t=1

XtX
′
t

(
û2
t − u2

t

)
and show that this upper bound converges in probability to zero. If this is the case, we can

conclude that V̂
p→ V (Why?). Now, (justify each step, please!)∥∥∥∥∥ 1n

n∑
t=1

XtX
′
t

(
û2
t − u2

t

)∥∥∥∥∥ ≤ 1

n

n∑
t=1

∥∥XtX
′
t

(
û2
t − u2

t

)∥∥
=

1

n

n∑
t=1

∥XtX
′
t∥
∣∣û2

t − u2
t

∣∣
≤ 1

n

n∑
t=1

∥Xt∥ ∥X ′
t∥
∣∣û2

t − u2
t

∣∣
=

1

n

n∑
t=1

∥Xt∥2
∣∣û2

t − u2
t

∣∣
≤ 1

n

n∑
t=1

∥Xt∥2
∣∣∣∣2(β̂ − β∗

)′
Xtut

∣∣∣∣︸ ︷︷ ︸
(i)

+
1

n

n∑
t=1

∥Xt∥2
[
X ′

t

(
β̂ − β∗

)]2
︸ ︷︷ ︸

(ii)

Step 4 First, take a look at (i), justifying each step:

1

n

n∑
t=1

∥Xt∥2
∣∣∣∣2(β̂ − β∗

)′
Xtut

∣∣∣∣ ≤ 2· 1
n

n∑
t=1

∥Xt∥2
∥∥∥β̂ − β∗

∥∥∥ ∥Xt∥ |ut| = 2·

(
1

n

n∑
t=1

∥Xt∥3 |ut|

)∥∥∥β̂ − β∗
∥∥∥ .

We have to show that the upper bound converges in probability to zero.

1. Since β̂
p→ β∗, this means that β̂−β∗ p→ . Consider the function g(A) =??. By ??,

we can conclude that
∥∥∥β̂ − β∗

∥∥∥ p→ 0.
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2. Now we have to ensure that the sample average

1

n

n∑
t=1

∥Xt∥3 |ut|

converges in probability to a �nite constant. Note that (justify each step)

E
[
∥Xt∥3 |ut|

]
= E

[
∥Xt∥2 (∥Xt∥ |ut|)

]
≤
[
E
(
∥Xt∥4

)]1/2 [E (∥Xt∥2 |ut|2
)]1/2

.

Since {X ′
t} is ??,

{
∥Xt∥4

}
is ??. Provided that Xjt has �nite fourth moments for all

j, E
(
∥Xt∥4

)
< ∞.

These previous two points allow us to conclude that(
1

n

n∑
t=1

∥Xt∥3 |ut|

)∥∥∥β̂ − β∗
∥∥∥ p→ .

Step 5 Second, take at a look at (ii), justifying each step:

1

n

n∑
t=1

∥Xt∥2
[
X ′

t

(
β̂ − β∗

)]2
≤ 1

n

n∑
t=1

∥Xt∥2 ∥X ′
t∥

2
∥∥∥β̂ − β∗

∥∥∥2 = ( 1

n

n∑
t=1

∥Xt∥4
)∥∥∥β̂ − β∗

∥∥∥2 .
Just like in Step 4, we have to show that the upper bound converges in probability to zero.

1. Since β̂
p→ β∗, this means that β̂−β∗ p→ . Consider the function g(A) =??. By ??,

we can conclude that
∥∥∥β̂ − β∗

∥∥∥2 p→ 0.

2. Now we have to ensure that the sample average

1

n

n∑
t=1

∥Xt∥4

converges in probability to a �nite constant. Show this.

These previous two points allow us to conclude that(
1

n

n∑
t=1

∥Xt∥4
)∥∥∥β̂ − β∗

∥∥∥2 p→ .

Step 6 Taking Steps 4 and 5 together, we can conclude that∥∥∥∥∥ 1n
n∑

t=1

XtX
′
t

(
û2
t − u2

t

)∥∥∥∥∥ p→ .

8



Therefore, V̂
p→ V .

Finally, Q can be consistently estimated by repeating the argument we used in the con-

sistency proof. In particular, we have

1

n

n∑
t=1

XtX
′
t

p→ .

Consider the function g(A,B) = A−1BA−1. By ??, we can conclude that(
1

n

n∑
t=1

XtX
′
t

)−1(
1

n

n∑
t=1

XtX
′
tû

2
t

)(
1

n

n∑
t=1

XtX
′
t

)−1

p→ .

Take a step back.

1. Think carefully why we cannot apply the argument in Step 2 for the sequence {XtX
′
tû

2
t}.

2. How will the proof change if you have correct speci�cation? Did the proof rely on

correct speci�cation?

3. What will happen when
1

n

n∑
t=1

XtX
′
t is not invertible for �nite n?

4. What happens in the case of conditional homoscedasticity? How will the argument

change?
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